EPRI Social Cost of Carbon Webcast Series

Today – Applying the Social Cost of Carbon: Technical Considerations

September 5, 2017

© 2017 Electric Power Research Institute, Inc. All rights reserved.

EPRI SCC Webcast Series

- July 25, 2017
 - Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study
- August 16, 2017
 - Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies
- September 5, 2017
 - Applying the Social Cost of Carbon: Technical Considerations

Publications and slides available at <u>http://eea.epri.com</u> ("Research" tab, "Integrated Assessment"). For information: Steven Rose, <u>srose@epri.com</u>.

Applying the Social Cost of Carbon: Technical Considerations

Steven Rose and John Bistline

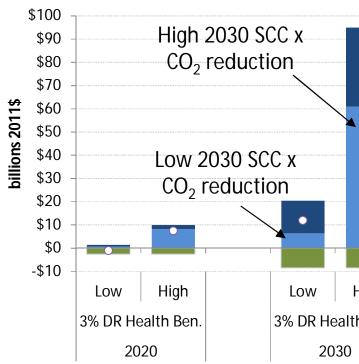
Energy and Environmental Analysis Research Group

Webcast September 5, 2017

© 2017 Electric Power Research Institute, Inc. All rights reserved.

Important to Evaluate Social Cost of Carbon Application

- Most commentary (public & scientific) related to the social cost of carbon (SCC) is on estimation of the SCC, not its use
- Surprising, given that we are most interested in the potential consequences of climate change and their management, not the SCC (a metric)
- Conceptual and methodological issues to consider in climate benefits and cost-benefit calculations
- Study Objective: Develop intimate understanding of how the SCC is being used, and should be used, that informs public dialogue and future application


The Social Cost of Carbon: An Important Metric & Issue

- **Social Cost of Carbon (SCC)** is an important metric
 - An estimate of damages to society from a unit of CO_2 ____
 - An estimate of the benefits of avoiding a unit of CO_2
- SCCs increasingly being considered & used to value greenhouse gas emissions
 - Federal, state, local, and other decisions-makers
- US Government (USG) legally obligated to value CO₂
 - Obama: USG developed SCC values used.
 - Trump: Unknown. Withdrew SCC estimates.
- Lack of technical information & understanding needed for proper evaluation and discourse
 - Led to detailed EPRI assessment of SCC modeling (1st EPRI SCC webcast)
 - And now, EPRI analysis of SCC application

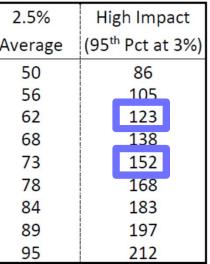
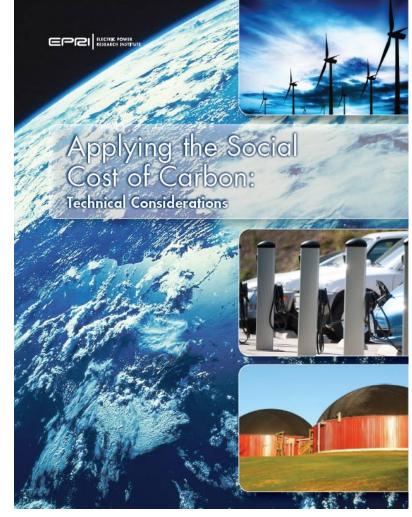

Year	5%	3%	
	Average	Average	A
2010	10	31	
2015	11	36	
2020	12	42	
2025	14	46	
2030	16	50	
2035	18	55	
2040	21	60	
2045	23	64	
2050	26	69	

Table ES-1: Social Cost of CO₂, 2010 – 2050 (in 2007 dollars per metric ton of CO₂)

Estimated 2020 and 2030 range of estimated benefits, costs, and net benefits for EPA's Clean Power Plan (Rate Based Approach)

•	 Air pollution health co- benefits
•	Climate (CO2) benefits
	Total compliance costs
High	 Net benefits
th Ben.	Developed from EPA RIA

US Government (2015, 2016)

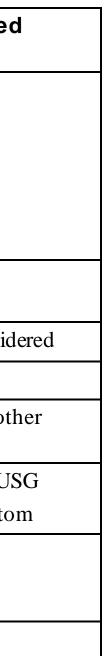

This Study

- Investigates SCC use to understand and evaluate the state of the art for application
- Identifies specific issues and opportunities for improving existing and future CO₂ reduction benefit and cost-benefit analyses
- Initial report 2016. Updating with new applications.
 - Issues and insights continue to be relevant.

Methodology

- Catalogue types of SCC applications
- Develop an inventory of federal regulatory applications 2.
- 3. Characterize appropriate use—conceptually and mechanically
- Evaluate applications, identifying issues and opportunities for 4. improvement

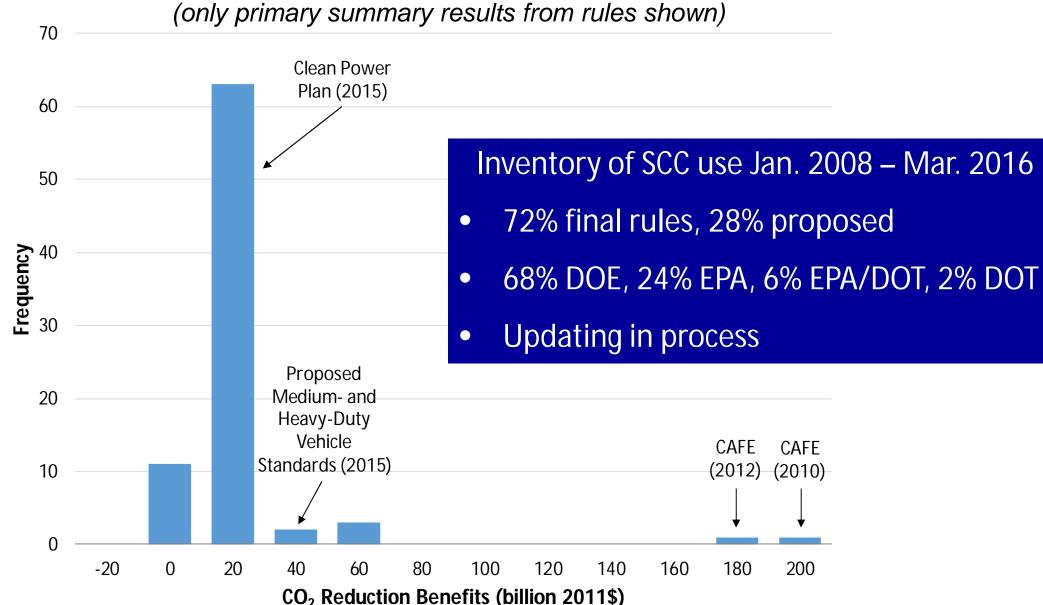
Applying the Social Cost of Carbon: **Technical Considerations**



http://eea.epri.com ("Research," "Integrated Assessment")

Types of SCC Applications

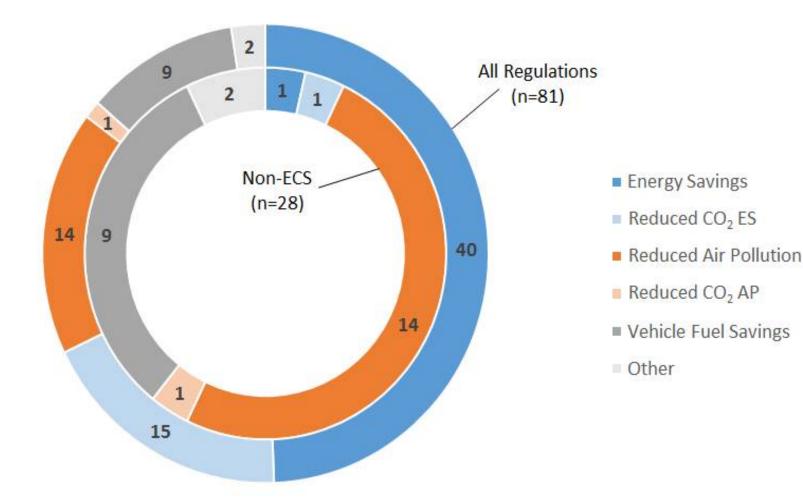
Application type	Examples	Global emissions implications	SCCs used	
Federal regulatory	DOT (NHTSA) vehicle efficiency standards, EPA Clean Power Plan, DOE small motor efficiency standard, DOE microwave efficiency standard (1, 2, 3, 4)	Incremental	USG	
Federal non-regulatory	CEQ NEPA reviews, BLM coal mine permitting (5, 6)	Incremental	USG	
State	Minnesota, Maine (7, 8)	Incremental	USG consid	
Local (e.g., city)	Austin, TX (9)	Incremental	Custom	
Value of technology	Technology SCC pricing (10)	Incremental	USG and ot	
Non-U.S. regulatory	Canada, United Kingdom	Incremental	Canada – US	
	(U.K.) (11, 12)		UK – Custo	
Federal climate goal evaluation	U.S. proposed legislative GHG cap and trade policy (12)	Non-incremental	USG	
Global climate goal evaluation	Tol(2009) (13)	Non-incremental	Custom	


"Incremental" = policy with relatively small expected effect on global emissions

"USG SCCs" = federal Interagency Working Group values

Inventory of U.S. Federal Regulatory SCC Applications

Histogram of Estimated CO₂ Reduction Benefits from U.S. Federal Regulations Jan. 2008 – Mar. 2016



The Role of CO₂ Reduction Benefits in Federal Rules Uncertain

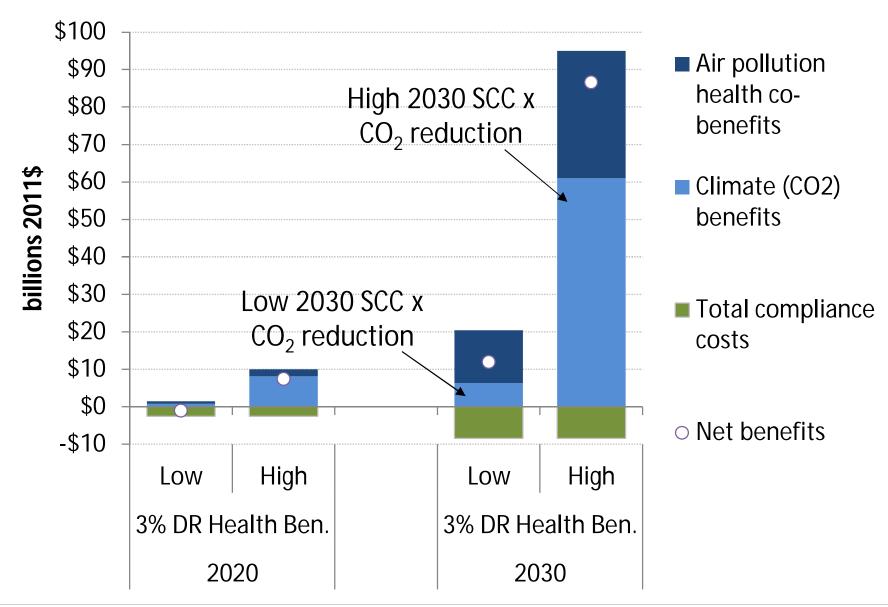
Primary benefits in U.S. Federal Rules (based on RIA) "primary summary" values)

- RIA "primary summary" results main driver for most rules
- conclusions!!
- More than primary summary • be minority to majority of benefits
- Most importantly, we identify lacksquareissues that need to be reduction and net benefits

ECS = Energy Conservation Standards (DOE)

suggest climate benefits not the

However, caution about drawing


results in RIAs – CO₂ benefits can

addressed to properly assess CO₂

CO₂ Benefits Could be Minority to Majority of Benefits E.g., Clean Power Plan RIA

Estimated 2020 and 2030 range of estimated benefits, costs, and net benefits for EPA's Clean Power Plan (Rate Based Approach)

Developed from EPA RIA

ELECTRIC POWER **RESEARCH INSTITUTE**

Appropriate SCC Application

Conceptually

- SCC_t = The net present value of global climate change impacts from one additional net global metric ton of carbon dioxide emitted to the atmosphere at a particular point in time
 - SCC is a <u>marginal value</u> (cost or benefit) of CO₂
 - SCC depends on the projected reference condition
 - \succ SCC values one unit change in <u>net global</u> CO₂
- Proper use:
 - SCC is an appropriate metric for valuing incremental changes in global CO₂ emissions
 - \succ Estimated CO₂ changes should be estimates of global net changes in CO₂

Mechanically

Two contexts—calculating CO₂ reduction benefits and policy net benefits

<u>Net Present Value CO₂ Reduction Benefits</u>

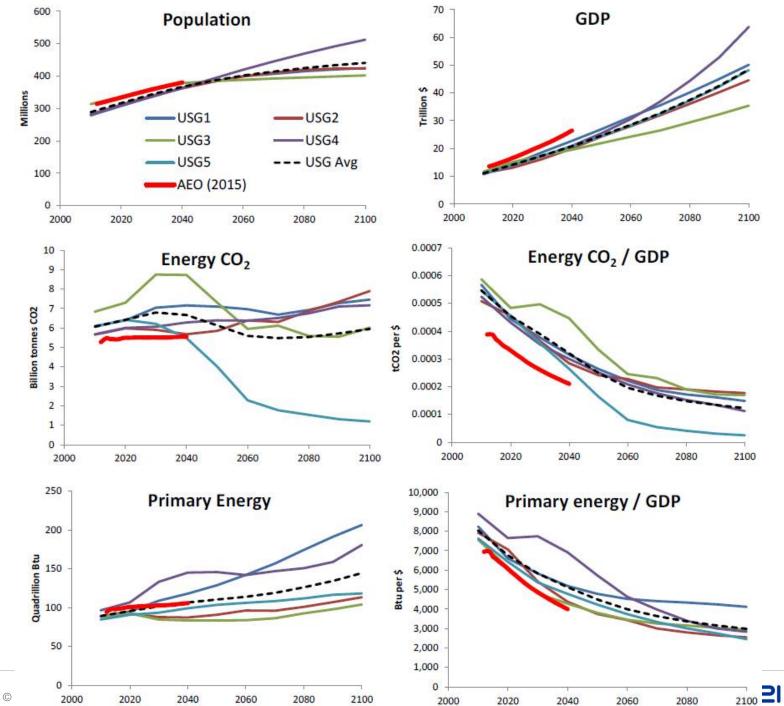
- Net Present Value Net Benefits
 - = NPV Benefits NPV Compliance Costs
 - = NPV CO₂ Reduction Benefits
 - + NPV Other Benefits
 - NPV Compliance Costs
- Challenges: combining calculations from different analyses, value streams over time, discounting

 $=\sum_{t} \frac{1}{(1+i)^{t}} (Net \ global \ CO_2 \ Reduction_t * SCC_t)$

Key Issues Identified in SCC Applications

Consistency between estimated benefits and costs

- Inconsistency in reference socioeconomic and emissions assumptions
- Inconsistency in the treatment of uncertainty across calculations
- Inconsistency in the type of values compared (levelized vs. annual)

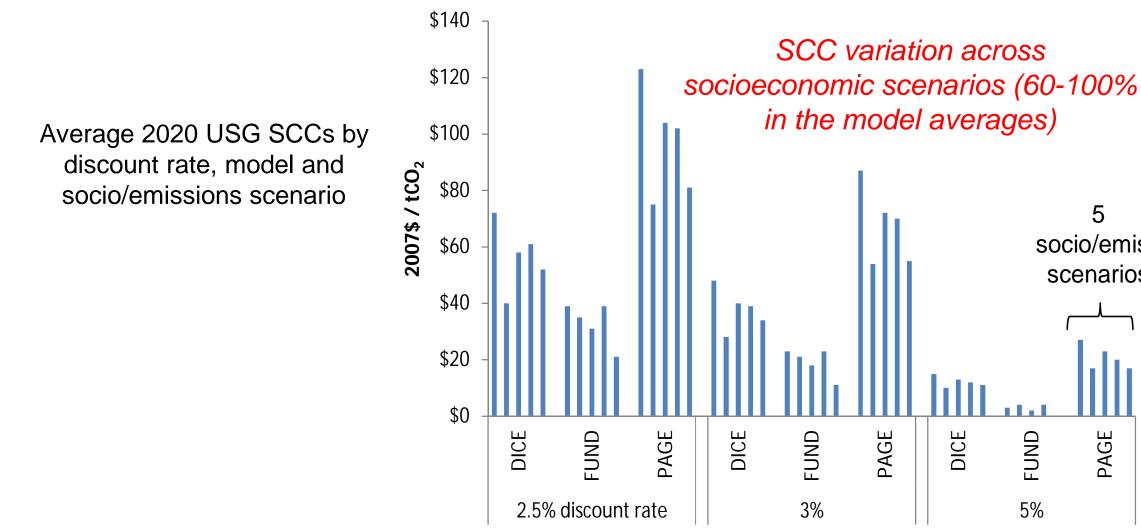

Inconsistency in Reference Assumptions & Uncertainty

Two types of inconsistency:

Future represented

Treatment of uncertainty (2)

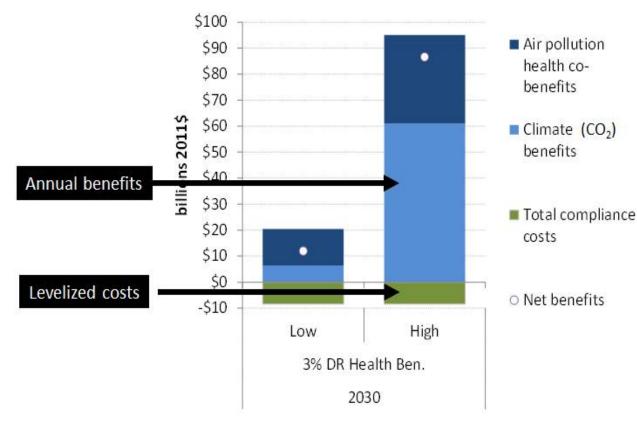
Comparing Clean Power Plan CO₂ reductions & compliance cost reference assumptions (AEO 2015) with SCC assumptions (USG)



ELECTRIC POWE **RESEARCH INSTITUTE**

Inconsistency in Reference Assumptions & Uncertainty

Socioeconomic/emissions assumptions matter for the SCC. May matter for other cost-benefit calculations also.



5 socio/emiss scenarios PAGE

Inconsistency in the Type of Values Compared – Levelized vs. Annual

Why is this problematic?

Levelized cost reflects discounted stream of values. Annual benefit value does not. Cannot compare!!

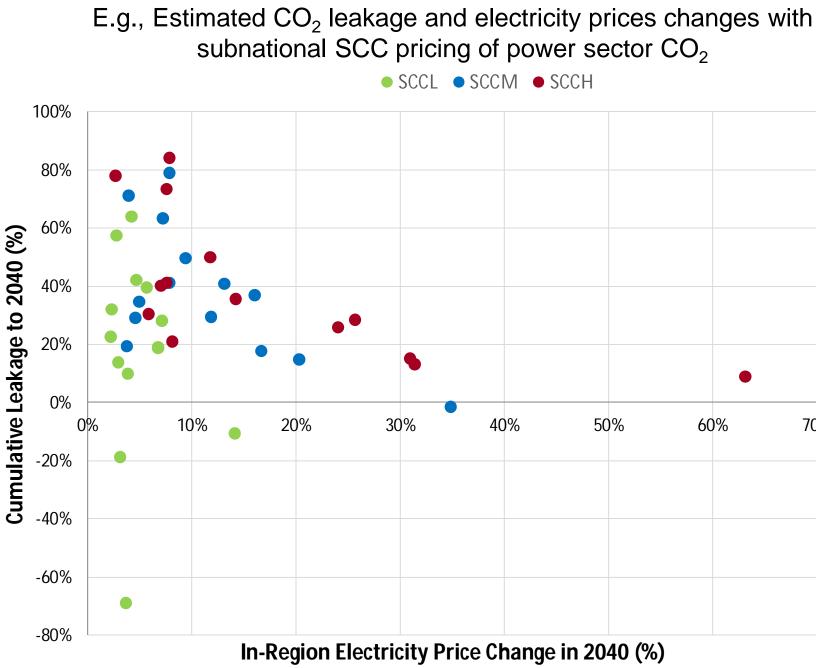
And, potentially misleading with different conclusions depending on comparison year. Both invalid!

Need to compare net present values!!

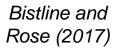
Key Issues Identified in SCC Applications

Consistency between estimated benefits and costs

- Inconsistency in reference socioeconomic and emissions assumptions
- Inconsistency in the treatment of uncertainty across calculations _
- Inconsistency in the type of values compared (levelized vs. annual)


Estimating net global CO₂ changes

- SCC is the value of a net incremental change in <u>**GLOBAL**</u> CO_2
- Regulations do not typically estimate CO_2 changes beyond the regulated segment (i.e., leakage) _
- x% positive leakage = x% lower CO₂ benefits


Need to Estimate <u>Net Global</u> CO₂ Changes

- Do we need to revise CO₂ benefits estimates?
- Yes, if there is expected to be significant CO₂ leakage beyond the regulated segment
- X% leakage = X% lower CO₂ benefits!

	•	
60)%	709

60%	70%

ELECTRIC POWER **RESEARCH INSTITUTE**

Key Issues Identified in SCC Applications

Consistency between estimated benefits and costs

- Inconsistency in reference socioeconomic and emissions assumptions _
- Inconsistency in the treatment of uncertainty across calculations _
- Inconsistency in the type of values compared (levelized vs. annual) _

Estimating net global CO₂ changes

- SCC is the value of a net incremental change in **GLOBAL** CO₂ _
- Regulations do not typically estimate CO₂ changes beyond the regulated segment (i.e., leakage) _
- x% positive leakage = x% lower CO₂ benefits

• Use of multiple SCC values

- Which SCC should be used (and corresponding benefits estimate)?
- In one rule, across rules, across agencies?

Which SCC Should be Used?

Example range of CO₂ reduction benefits using the four USG SCC trajectories (CPP)

·				
	2020	2025	2030	Order of magnitude
Climate Benefits ^b				climate benefits
5% discount rate	\$0.80	\$3.1	\$6.4	What do thou ropro
3% discount rate	\$2.8	\$10	\$20	What do they repre-
2.5% discount rate	\$4.1	\$15	\$29	not a representa
95th percentile at 3% discount rate	\$8.2	\$31	\$61	Guidan

Table ES-1: Social Cost of CO₂, 2010 – 2050 (in 2007 dollars per metric ton of CO₂)

Year	5%	3%	2.5%	High Impact
rear	Average	Average	Average	(95 th Pct at 3%)
2010	10	31	50	86
2015	11	36	56	105
2020	12	42	62	123
2025	1 /	40	60	120
2030	16	50	73	152
2035	18	55	/8	168
2040	21	60	84	183
2045	23	64	89	197
2050	26	69	95	212

US Government (2015, 2016)

NAS notional alternative for improved SCC uncertainty communication

Discount Rate									
	5.0%			3.0%		2.5%			
Year	Low	Avg.	High	Low	Avg.	High	Low	Avg.	High
2020	—	-	—	—	—	I	-	-	_
2025	2 2		-	-	—	_			-
2050	—			-		-	_		

Source: National Academies of Sciences, Engineering, and Medicine. (2016)

e difference in estimated ts. Which one to use?

esent? Current SCC range tation of uncertainty.

nce needed.

Key Issues Identified in SCC Applications (continued)

Pricing the CO₂ externality more than once

- Across policies, risk of pricing CO_2 twice (or more) upstream & downstream. —
- More than once = excess cost to society
 - E.g., coal mine permitting / Public Utility Commission externalities pricing / Clean Power Plan
 - E.g., low-carbon subsidy / regional emissions cap / Clean Power Plan
- Coordination (agency, jurisdiction) needed to insure CO_2 valued once to avoid excess costs on society —

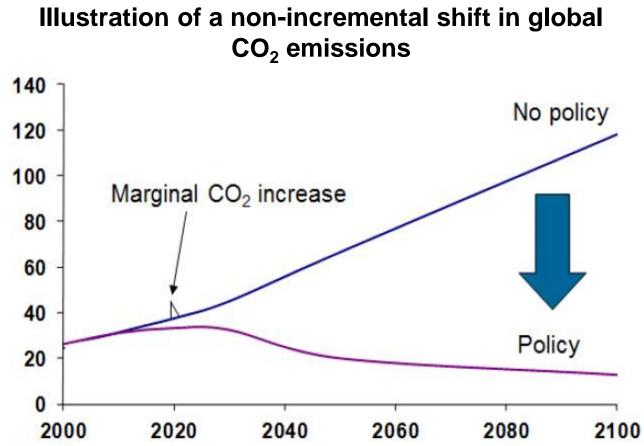
Valuing non-CO₂ GHGs

- Until last year, changes in non-CO₂ GHGs typically not valued. Now USG developed SC-CH₄ and SC-N₂O estimates.
- Social costs of non-CO₂ GHGs differ from the SCC, and global damage trade-offs between GHGs differ from Global — Warming Potential trade-offs
- IMPORTANT: Many issues with current USG SCC modeling and application also relevant for non-CO₂ estimates

SCCs and overall climate objectives (global, national)

- Tempting to apply SCCs to evaluate or help set global and domestic climate policy goals ____
- However, SCCs conceptually inappropriate for these applications ____
- A different concept & framework needed

Can SCCs Inform Global Climate Policy Goals?

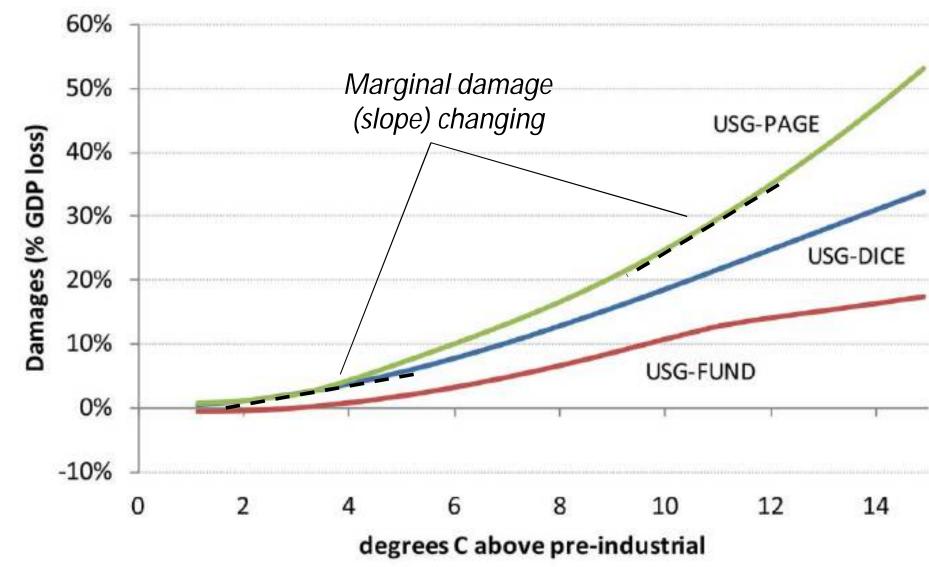

- No! Need a different concept and framework!
- Interested in evaluating transitions from higher to lower climate futures—changing climate and society
- Marginal benefits changing value of Xth ton of CO₂ reduced will not equal value of 1st ton reduced
 - Shape of climate damage function important

SCCs

- Based on a particular assumed socioeconomic and _ climate future
- Also, USG SCCs based on an amalgamation of futures
- Marginal costs also changing rise with the level of emissions reduction ambition

Bottom line:

- Evaluating climate strategies requires a framework for consistent modeling of endogenous marginal benefits & costs
- Also, need better understanding of damages ____



GtCO2 / year

Marginal Damages are Not Constant E.g., Implied damage functions behind USG SCC modeling

Global damage functions based on default damage parameterization results from a technical assessment of USG SCC damage component modeling

Application Issues Identified Not Isolated Instances

Application	Benefit & cost consistency?	Estimating net global CO ₂ change?	Multiple SCC value guidance?
Passenger and light duty truck vehicle efficiency standards	No	No*	Partially, standards based on 3% discount rate average SCC
Clean Power Plan	No	No	No
New Source CO ₂ Performance Standard (111(b))	No	No	No
NRDC analysis of potential existing source CO ₂ performance standard	No	No	No
Cooling water intake regulations	No**	No	No
Cost-benefit analysis of U.S. climate legislative proposal (Holladay and Schwartz, 2009)	No	No	No

SCC estimation issues also relevant

* RIA does estimate emissions reductions for reduced fuel consumption, including imports, but not market driven changes in international consumption

23

Valuing non-CO₂ GHGs?

No, monetized CO₂eq emissions for illustrative purposes but not in net benefits No

No

No

No

Yes, but CO₂eq

Concluding Remarks

- Reviewing and improving SCC use is as important as improving SCC estimation
- This study identifies fundamental issues to address to improve the reliability of CO_2 reduction benefit and net benefit calculations, insights, and conclusions
- Application guidance is needed to avoid these issues and facilitate consistent application and improved decision-making
- SCC estimation issues, of course, still also need to be addressed

Thank you for joining us today!

We hope you have enjoyed the webcast series. Stay tuned for future related research and insights.

Questions/information: Steven Rose, srose@epri.com.

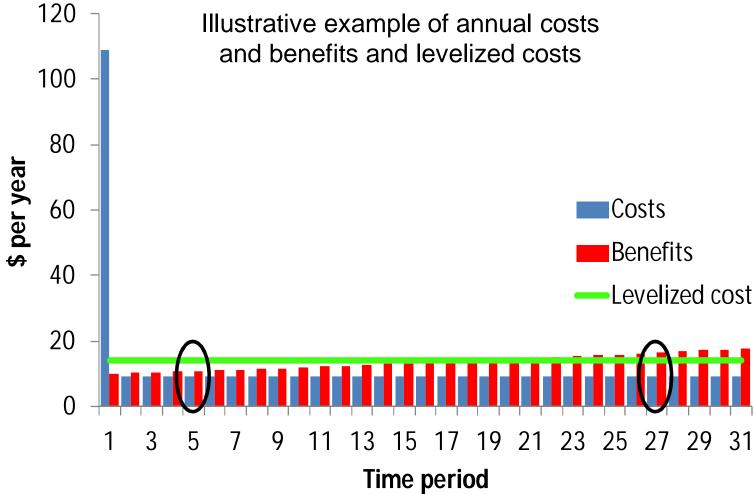
Publications and slides available at <u>http://eea.epri.com</u> ("Research" tab, "Integrated Assessment").

SCC Webcast Series

- July 25, 2017 Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study
- August 16, 2017 Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies
- September 5, 2017 Applying the Social Cost of Carbon: Technical Considerations

Resources

- Bistline and Rose (2017). Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies, Discussion Paper, EPRI Report 3002011658.
- National Academies of Sciences, Engineering, and Medicine (2017). Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Committee on Assessing Approaches to Updating the Social Cost of Carbon, Board on Environmental Change and Society, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. doi: 10.17226/24651.
- Rose and Bistline (2016), Applying the Social Cost of Carbon: Technical Considerations, EPRI Report 3002004659.
- Rose, et al. (2017), "Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study," Climate Change Economics 8(2).
- Rose, et al. (2014), Understanding the Social Cost of Carbon: A Technical Assessment, EPRI Report 3002004657.
- USG Interagency Working Group on Social Cost of Carbon (2016). *Technical Update of the Social Cost of Carbon for* Regulatory Impact Analysis Under Executive Order 12866, August.
- USG Interagency Working Group on Social Cost of Carbon (2015). Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866, July.



Inconsistency in the Type of Values Compared – Levelized vs. Annual

Levelized costs cannot be compared to annual benefit values.

Comparing can be potentially misleading with different conclusions depending on comparison year. Both invalid!

> Need to compare net present values!!

